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Abstract
Starting from the Hamilton–Jacobi equation describing a classical ensemble,
one may infer a quantum dynamics using the principle of maximum uncertainty.
That procedure requires an appropriate measure of uncertainty. Such a measure
is constructed here from physically motivated constraints. It leads to a unique
single parameter extension of the classical dynamics that is equivalent to the
usual linear quantum mechanics.

PACS numbers: 03.65.Ca, 03.65.Ta, 89.70.+c

1. Deconstructing the Schrödinger equation

Despite its remarkable quantitative success, quantum mechanics continues to puzzle us with
its seemingly counter-intuitive predictions. Even the mathematical formalism most widely
used for its description appears very different from that used in classical mechanics: one sees
in quantum mechanics the appearance of complex numbers, probability amplitudes and an
apparently exact linear evolution equation.

In this paper the structure of Schrödinger’s equation, in particular its linearity, will be
derived within an information theoretic framework to be elaborated on below. The various
assumptions involved in the derivation will also be discussed at length.

Let us begin with a review of the Schrödinger equation for N particles in d +1 dimensions,

ih̄ψ̇ =
[
−h̄2

2
gij ∂i∂j + V

]
ψ (1)

where i, j = 1, 2, . . . , dN and the metric is defined as gij = δij /m(i) with the symbol (i)

defined as the smallest integer �i/d. That is, i = 1, . . . , d, refer to the coordinates of the first
particle of mass m1, i = d + 1, . . . , 2d, to those of the second particle of mass m2 and so on.
The overdot refers to a partial time derivative, and the summation convention is used unless
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otherwise stated. Cartesian coordinates have been chosen as these allow an unambiguous
correspondence between observables such as momenta and their operator representation [1].

The metric gij occurs naturally in the description of the system in configuration space
[2, 3] and plays a crucial role in the discussion below. It is pertinent to note that the metric gij

is diagonal and positive-definite. This is a consequence of the form of the kinetic term in the
Schrödinger equation in Cartesian coordinates.

Since our intuition is mostly classical, it is useful to rewrite the Schrödinger equation in
a form which allows comparison with Newtonian physics. The Madelung transformation [4]
ψ = √

p eiS/h̄ decomposes the Schrödinger equation into two real equations,

Ṡ +
gij

2
∂iS∂jS + V − h̄2

8
gij

(
2∂i∂jp

p
− ∂ip∂jp

p2

)
= 0, (2)

ṗ + gij ∂i(p∂jS) = 0. (3)

The first equation is a generalization of the usual Hamilton–Jacobi equation, the term with
explicit h̄ dependence (the ‘quantum potential’ [1]) summarizing the peculiar and nonlocal
aspects of quantum theory. The second equation is a continuity equation expressing the
conservation of probability,

∫
p(x, t) dxNd .

Equations (2) and (3) may be obtained from a variational principle [3]; one minimizes the
action

� =
∫

p
[
Ṡ +

gij

2
∂iS∂jS + V

]
dxNd dt +

h̄2

8
IF (4)

with respect to the variables p and S. Interestingly, the quantity

IF ≡
∫

dxNd dt gij p(∂i log p)(∂j log p) (5)

resembles the ‘Fisher information’ [5], whose inverse sets a lower bound on the variance of
the probability distribution p(x) through the Cramer–Rao inequality [6, 3]. Since a broader
probability distribution p(x) represents a greater uncertainty in x, the term IF is actually an
inverse uncertainty measure.

Equations (4) and (5) were used in [3, 7] to derive Schrödinger’s equation through a
procedure analogous to the principle of maximum entropy (uncertainty) [8, 9] used in statistical
inference theory. The idea is that without the term IF , variation of equation (4) gives rise to
equations describing a classical ensemble. As the probability distribution p(x) characterizing
the ensemble is supposed to represent some fluctuations of unknown origin, we would like to
be as unbiased as possible in its choice. This is achieved by choosing the broadest distribution
possible, representing our maximum uncertainty. Technically, this is implemented in (4) by
minimizing (5) when varying the classical action: h̄2/8 is the Lagrange multiplier.

2. Constructing the measure

However, the intriguing approach of [3] does not explain, a priori, the form of the information
measure that should be used. That is, why must IF be minimized rather than something else?

The goal of this section is to construct, from first principles, information measures that
are permissible. To fix the notation, consider therefore the same classical ensemble as in
section 1, but now constrained by a general information measure I whose form is to be
determined. The relevant action is then

A =
∫

p
[
Ṡ +

gij

2
∂iS∂jS + V

]
dxNd dt + λI, (6)
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with λ a Lagrange multiplier. Varying this action will give rise, in general, to a nonlinear
Schrödinger equation after an inverse Madelung transformation,

ih̄ψ̇ =
[
−h̄2

2
gij ∂i∂j + V

]
ψ + F(ψ,ψ †)ψ, (7)

with F representing the nonlinearity.
In order to construct an explicit form for the information measure I, constraints need to

be imposed. These constraints are of two types. The first type are those that are required for
I to be sensibly interpreted as a measure of inverse uncertainty (information). Condition [S1]
below belongs to this type.

The other constraints [S2]–[S6] to be discussed below are of a different type. One
may adopt two alternative perspectives to motivate these constraints. The first, classical,
perspective is to view action (6) as a generalized form of classical dynamics. In that case a
minimal deformation of the usual classical dynamics is achieved if the additional constraints
are the same as those already satisfied by the I = 0 part of (6): locality, homogeneity,
separability, Galilean invariance, and absence of more than two derivatives in each product
of terms in the action. Thus by using [S2]–[S6] one is not imposing any constraints on the
action that do not already exist. In this classical perspective the physical motivations for
the constraints are either the usual ones with an obvious interpretation (locality, separability,
Galilean invariance), or else they are explained below.

The second, quantum, perspective is to view conditions [S2]–[S6] with respect to the
interpretation of equation (7), which represents a generalized Schrödinger equation. As the
usual linear quantum mechanics has been experimentally well tested, one could argue that it
makes sense to only consider those potential deformations of the linear theory that permit as
much of the usual interpretations of the wavefunction as possible. Remarkably, as discussed
below, the same conditions [S2]–[S6] motivated by the classical perspective are needed also
for this quantum viewpoint.

Here then are the axioms:

• [S1]

(i) Firstly, by definition, the measure I should be a real valued and positive-definite
functional for all p = ψ †ψ . More specifically, we would like the measure to be
universal in the sense of being independent of the external potential V.

(ii) Also, the interpretation of I as an information (inverse uncertainty) measure requires
that it should approach a minimum when p is uniformly distributed. (A minimum
exists because by (i) I is positive definite.)

• [S2] Locality: I should be of the form I = ∫
dxNd dt pH(p) where H is a function of

the probability p(x, t) and its spatial derivatives. In the quantum perspective this local
form ensures the validity of the weak superposition principle in the equations of motion
(7): states with negligible overlap will not influence each other strongly. (In principle
one should also allow I to depend on S, x and time derivatives. These generalizations are
discussed in the next section.)

• [S3] Homogeneity: H should be invariant under scaling, H(λp) = H(p). The
normalization of probability, 1 = ∫

dxNd p(x, t), implies that the dimensions of p(x, t)

depend on the dimensions of the configuration space. Thus by demanding H to be
scale invariant one ensures that the resulting equations of motion, whether in the
classical or quantum perspective, have a universal form independent of the number
of particles. Thus this condition may be viewed as restricting the search to universal
dynamics.
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(There is another motivation sometimes given for this homogeniety condition: it allows
solutions of (7) to be (re)normalized and thus allow for the usual interpretation of states
after a measurement process, as discussed in [10].)

• [S4] Separability: H should be separable for the case of two independent sub-systems
described by probability distributions p1 and p2: H(p = p1p2) = H(p1) + H(p2).

• [S5] H should be Galilean invariant1.
• [S6] H should not contain more than two derivatives in any product of terms that appears

in it. As each derivative involves an inverse length, this condition obviously restricts the
number of new dimensional parameters that can appear in (6) and (7). This condition will
be referred to in brief as ‘absence of higher number of derivatives’ or ‘AHD’.
As will be apparent later, the implementation of this condition means that the lagrange
multiplier λ in (6), and hence Planck’s constant, is the only new parameter that is required
in making the transition from classical to quantum mechanics. Conversely, relaxing the
AHD condition would imply the appearance of other parameters, with the dimensions of
length, and a generalized form of quantum dynamics.

I would like to reiterate that conditions [S2]–[S6] above are all already satisfied by the
classical part of action (6), so demanding them of the additional piece I is actually quite
natural and minimalist. The additional motivations provided by viewing the equations from
the quantum perspective are simply a bonus.

Having enumerated and motivated the axioms, one may begin constructing the measure.
Clearly the homogeneity requirement [S3] cannot be satisfied if H depends only on p: it must
also contain derivatives of p. The AHD condition and rotational invariance imply that the
building blocks of H must be

gijU1∂iU2∂jU3 and gijV1∂i∂jV2, (8)

where the Ui, Vi are the functions of p. Separability can now be used to deduce that H must
be linear in gij :

H = gij (U1∂iU2∂jU3 + V1∂i∂jV2). (9)

One may consider sums of such structures and so place an additional index n on the Ui, Vi

but it is easy to check that the final result below remains unchanged. One could also use
the separability condition to restrict the explicit forms that U,V may take but I will use the
homogeneity condition for that purpose below. (Note that if the form of H(p) were restricted
so that derivatives of p occurred only in polynomial form, as is commonly done in physics,
then separability would not be required in obtaining (9).)

Using the chain rule one can rewrite (9) as

H = gij

(
∂ip∂jp

p2
[U1U

′
2U

′
3p

2 + V1V
′′

2 p2] +
∂i∂jp

p
[V1V

′
2p]

)
, (10)

where the prime symbol denotes a derivative with respect to p. Consider now the scaling
p → λp under which H is required to be invariant. The terms inside the square brackets
become dependent only on the product λp. Since the forms ∂ip∂j p

p2 and ∂i∂j p

p
are distinct

and independently scale invariant, this means that the terms in square brackets must also be
independent of λ: but since those terms depend only on λp, this implies that the terms in
square brackets are simply constants.

Thus one obtains

I =
∫

dt dxNd pgij

(
A

∂ip∂jp

p2
+ B

∂i∂jp

p

)
. (11)

1 In this paper, when discussing the symmetry of the Schrödinger equation one will always refer to the case of
vanishing potential, V = 0.
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The ‘B’ term gives a surface contribution which might not vanish for some wavefunctions
and so its contribution to I is of indefinite sign. The positivity and universality of I therefore
requires us to choose B = 0.

Hence one concludes that the unique solution of conditions [S1]–[S6] is the information
measure IF given in (5). The Lagrange multiplier λ in (6) must then have the dimension of
(action)2 thereby introducing the Planck constant into the picture; the equation of motion is
then the linear Schrödinger equation.

Interestingly, neither the second part of [S1] nor the full Galilean invariance was used
explicitly in the above construction even though the final result, the measure IF , does satisfy
all the conditions. However these additional constraints will be useful in the next section.

It should be noted that, as shown in [11], action (4) increases for variations of p that keep
S fixed, the increase being due to an increase in IF , so that the resulting solutions are not just
an extremum but do indeed minimize the information measure IF .

The positivity condition in [S1] plays an important physical role beyond ensuring the
existence of a minimum for I (state of maximum uncertainty). It also guarantees that the
following energy functional is bounded from below for potentials V that are likewise bounded:

E[S, p] =
∫

dNdxp
(gij

2
∂iS∂jS + V + λH(p)

)
(12)

where the function H is defined in [S2]. This functional is conserved for stationary states and
it also reduces to the average of the usual quantum mechanical Hamiltonian for the case of the
linear theory. These properties of the energy functional qualify it as the most natural to use for
defining the energy of the system in a potential generalization (nonlinear) of quantum theory.

The meaning of the AHD condition can be elucidated with an explicit example. Consider

H1(p) = gij ∂i(log p + ηf (p))∂j (log p + ηf (p)) (13)

with f (p) = gkl(∂k log p)(∂l log p) and η a constant. This H1 satisfies all the constraints
except AHD. The price to pay is the appearance of an additional parameter, η, required to
balance the dimensions of the higher order derivatives.

Thus the AHD condition ensures that, within the information theoretic approach, the
Schrödinger equation is the unique single parameter extension of the classical statistical
Hamilton–Jacobi equations. Since the information theoretic approach attempts to provide an
unbiased description of data, one may say that the AHD condition further restricts us to the
simplest unbiased description.

3. Relaxing some conditions

It has been implicitly assumed in the previous section that the metric gij that appears in I is the
same as the metric in the classical part of the action. If one allows in the measure a metric ḡij

which is still diagonal but different from the classical metric gij then a nonlinear Schrödinger
equation apparently ensues. However the nonlinearity can be removed by a change of variables
(a nonlinear gauge transformation) [12, 13] with the result that for a range of values of the
Lagrange multiplier λ one actually recovers the usual linear Schrödinger equation. (This
example highlights the point that a nonlinear Schrödinger equation cannot immediately, and
in all generality, be declared pathological.) However for the remaining values of λ one obtains
after the change of variables [13] a linear diffusion equation. It will be assumed for the rest of
this paper that the classical metric is used also in the information measure when symmetries
are preserved.

Consider now allowing I and hence H to depend also on the phase factor S(x, t) in
addition to the probability density p(x, t). By definition, the phase factors S1 and S2 for two
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independent systems are additive in the composite system, S = S1 + S2. One can proceed
as before and consider the most general structures restricted by rotational invariance, AHD,
homogeneity, separability and positivity. The result is a generalized measure of the form

IQ =
∫

dt dxNdpgij ∂i(α1 log p + α2S)∂j (α1 log p + α2S), (14)

where the αk are constants. In arriving at this structure, homogeneity has only been used to
imply that derivatives of p occur, while separability is the stronger constraint as it acts also on
the S variable. However the second part of condition [S1] requires that α2 = 0, thus eventually
one is again led to the Fisher form. (Again, more generally one may place another index n on
the αk and sum over such terms but the conclusion remains unchanged.)

Nevertheless, the special case of (14) with α1 = 0 but α2 �= 0 is sufficiently interesting to
deserve further study because like the classical measure IF , it is positive definite by itself, but
unlike IF it also contains some information about the phase of the wavefunction. Now, if used
in the variational action, this S-dependent term can be absorbed, after a scaling of the metric,
by a similar term already existing in the classical part of action (6). The net result is therefore
still a linear Schrödinger equation but with a mass, m̄(i) which is renormalized with respect to
the original mass parameter m(i) in the classical theory. Empirically this renormalization will
have no consequence if all calculations, as usual, refer to the mass parameter appearing in the
quantum theory.

One may also consider allowing time derivatives of p and S in H. However the demands
of positivity conflict with those of separability unless one relaxes the AHD condition: then it
is possible to have structures such as

H2(p) = gij ∂i

(
log p + η

ṗ

p

)
∂j

(
log p + η

ṗ

p

)
(15)

that contain dimensionful parameters.
Finally, one may consider an explicit dependence on the coordinates, xi , in H. However

such terms are ruled out by translational invariance.

4. Conclusion

If one adopts the philosophy that the laws of physics should be constructed so as to provide
the most economical and unbiased representation of empirical facts, then the principle of
maximum uncertainty [8, 9] is the natural avenue by which to investigate the foundations of
quantum theory [7, 3].

The investigation here has extended the initiative of [3] in several ways. Firstly, the
constraints that a relevant information measure should satisfy have been made explicit and
motivated from two alternative perspectives. Secondly, the measure has been constructed from
the constraints rather than postulated, thus motivating the structure of the linear Schrödinger
equation. Indeed, it has been shown here that within the information theoretic approach, the
linear Schrödinger equation is the unique one-parameter extension of the classical dynamics.

One should compare the approach here with an alternative, axiomatic, but not information
theoretic based, construction of the Schrödinger equation from classical mechanics discussed
in [14]. Starting from the classical Hamilton–Jacobi equations, the authors add constrained
fluctuations to the kinetic term. The result is an equation similar to equation (6) above with an
explicitly positive definite H(p) and with the symmetries of the classical action. However, in
addition to the major differences in motivation and epistemology, there is a significant technical
contrast between this paper and [14]: there the authors postulate and use an ‘exact uncertainty
relation’ instead of the homogeneity condition [S3] adopted here. As discussed above, the
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homogeneity condition is already satisfied by the classical action and has the interpretation of
making the form of the equations of motion independent of the dimension of configuration
space, and thus it is a simple restriction to universal dynamics.

An open and interesting problem is to extend the constructive approach adopted in
section 2 to include spin [15] and relativistic effects [3]. This might involve further refinement
of the conditions in section 2 and might result in the use of more general information measures
such as IQ of equation (14).

Finally, one may enquire into the possible generalizations of quantum mechanics (typically
nonlinear) that result from omitting one or more of the conditions [S1]–[S6] and the ensuing
phenomenological consequences. These issues are discussed elsewhere [16, 17]. It is of
interest to note that one of the earliest suggestions for a nonlinear Schrödinger equation [18]
had a log p nonlinearity, which is allowed if the homogeneity condition is abandoned.
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